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Surfactant transport dynamics and the consequences for rectified diffusion of mi- 
crobubbles are treated for bubbles undergoing arbitrarily large-amplitude periodic 
radial oscillations. A perturbation technique is used to reveal averaged equations 
for the slow convection-enhanced diffusive transport of surfactant molecules. These 
equations have a readily obtained asymptotic limit in the form of a single nonlinear 
integral equation - this may be interpreted as a dynamic equilibrium adsorption 
isotherm. For a lightly populated interface, an explicit solution for the surface excess 
population of surfactants may be obtained. Bubble oscillations are shown to drive an 
increased number of surfactant molecules to the interface, if it is lightly populated, 
but to reduce the maximum possible population of surfactants on the interface. These 
effects have important consequences for rectified diffusion, in which the interfacial 
resistance to gas transfer of a surfactant monolayer is a strong function of the surface 
excess population. 

1. Introduction 
A surfactant molecule consists of a hydrophobic and a hydrophilic portion; as 

a consequence surfactants accumulate preferentially at gas-liquid interfaces. This 
adsorption process introduces a discontinuity to the macroscopic concentration field, 
and the classical transport equation for the bulk concentration of surfactant needs to 
be supplemented by appropriate equations to quantify the surface excess. Namely, one 
requires an appropriate equation to characterize the ‘jump’ in the surfactant surface 
concentration, known as the surface excess balance equation, and a bulk interphase 
partition relation that describes the equilibrium between the bulk and surface excess; 
we refer the reader to Edwards, Brenner & Wasan (1991) for background. 

In the case of a static interface the bulk problem can be eliminated by the use of 
Laplace transforms, and an integral equation for the time evolution of the surface 
excess can be obtained. This technique was used by several investigators and is 
outlined by Borwankar & Wasan (1983). A similar technique was used by Joos and 
Van Uffelen for the surfactant transport associated with surface dilation. The moving 
interface sets up convection currents that must be accounted for in the diffusion 
equation. Van Voorst Vader, Erkens & Van Den Tempe1 (1964) studied the case of 
an expanding interface, whereas Joos & Van Uffelen (1993) and Van Uffelen & Joos 
(1993) studied a contracting interface. 

In the analysis of an oscillating bubble one must restrict attention to limiting cases 
owing to the unsteady, spatially inhomogeneous velocity field and the complicated 
boundary condition. The case of small oscillations was treated by Gottier, Amundson 
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& Flumerfelt (1986). Johnson & Stebe (1994) improved this analysis to obtain 
information about the sorption kinetics of surfactants and to measure surface tension 
and dilational viscosity using the phase lag and amplitude ratio between the gas 
pressure and bubble radius. Recently, numerical results were reported for small- 
amplitude axisymmetric bubble oscillations and large-amplitude spherical oscillations 
by Nadim (1996); however the quantitative results are restricted to specific numerical 
values of the relevant dimensionless parameters. Relevant to the present work, Nadim 
observed that the amount of surfactant on an oscillating bubble can be 30% higher 
than the initial equilibrium value. 

Surfactants are known to inhibit gas transport through an interface (Barnes 1986), 
hence knowledge of the amount of surfactant on the surface is of primary importance 
when determining gas transport across an interface. For the case of gas transport 
across the interface of a soluble spherical oscillating bubble, the significance of 
surfactants on the phenomenon of rectified diffusion was demonstrated by both 
experiment (Crum 1980) and theory (Fyrillas & Szeri 1994, 1995). Qualitatively, 
experimental and theoretical results agree that bubble growth rates are enhanced 
dramatically by the presence of surfactants. However, direct comparison has not yet 
been possible, owing to the lack of the adsorption isotherm and interfacial resistance 
of the surfactant under consideration (Fyrillas 1995). 

At a static interface at the boundary of a still liquid, it is well known that there 
is an equilibrium adsorption isotherm that relates the surface excess of surfactant 
to the bulk concentration of dissolved surfactant. In this paper, our primary goal 
is to develop a dynamic equilibrium adsorption isotherm for the surface excess 
of surfactant on a spherical bubble undergoing large-amplitude periodic volume 
oscillations. Using this relationship, we return to the problem of bubble growth by 
rectified diffusion treated in two recent papers (Fyrillas & Szeri 1994, 1995), and extend 
our previous theory. We determine growth rates of bubbles by rectified diffusion 
for fixed bulk concentration of surfactant assuming that the dynamic equilibrium 
adsorption isotherm developed herein holds. 

2. Formulation 
In this section we formulate the surfactant transport problem outside a spherical 

bubble undergoing radial oscillations (with radius R(t)). As described by Edwards et 
al. (1991) this requires a transport equation for the bulk 

(2.1) 

an evolution equation for the surface excess 

and a relation for non-equilibrium partitioning of a soluble surfactant between 
interface and bulk 

(2.3) 
dP 
ar D s - ( r  = R(t) , t )  = @(p'(t),p(r = R(t) , t ) ) .  

Thus, (2.3) is regarded as the boundary condition for the field equation (2.1); (2.2) is 
an auxiliary equation for the surface excess concentration of surfactant. Here @J is 
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the kinetic rate expression 

@ = ki exp [ 4 (5) *] ( p  ( r  = R(t) ,  t )  (p; - p s )  - 

where ki is the forward rate constant in the kinetic rate expression, K ,  is the 
adsorption coefficient, D, is the diffusivity of the surfactant in the liquid, p is the 
molar concentration of surfactant, ps is the surface excess molar concentration of 
the surfactant and pS, is the maximum realizable surface excess. The parameter A 
measures the degree of non-ideality of the interface: A is positive if there is an 
attractive interaction between the surfactant molecules and negative if there is a 
repulsive interaction. 

To clarify the effect of A on the sorption process, we consider the adsorption 
and desorption terms separately in the kinetic rate expression (equation (2.4)) by 
multiplying through with the pre-factor exp[A/2 ( p s / p 2 , )  '1. While adsorption is 
accelerated because the pre-factor is greater than one (for positive A ) ,  its combination 
with the exponential exp[-A (ps /pS, ) ] ,  in the desorption term, leads to a decrease 
in desorption. Hence the effect of (positive) A is to both increase adsorption and 
decrease desorption. The reverse is true when A is negative. 

For initial and far-field conditions we shall assume that the bubble was created in 
a liquid with initial bulk surfactant concentration PO, i.e. we have 

p ( r  -+ 00, t )  = p ( r ,  t = 0 )  = po 

and 

In these equations R(t )  may be obtained by integration of the equations of motion 
of the bubble. We return to this point in 44. 

The problem may be non-dimensionalized with respect to the following natural 
scales. As a length scale we take a, the radius of the undisturbed bubble; the time 
scale is Q;', which is the inverse of the natural frequency of radial oscillation of 
the bubble about the undisturbed state; the surface excess is non-dimensionalized 
using pS, and the bulk concentration by p&/a. This leads to dimensionless parameters 
corresponding to (i) the PCclet number for the bulk surfactant transport problem 

p"t = 0 )  = 0. 

(ii) a parameter we identify as the affinity of surfactant for the interface versus 
solution in the bulk 

PS,Kl7 A, = -, 
a 

and (iii) a parameter related to the adsorption per cycle of bubble oscillation 

Based on the literature (Joos & Van Uffelen 1993; Borwankar & Wasan 1983), typical 
values for the constants ki ,  K,, p& and D, are lo7 cm3 gmoles-' s-', lo7 cm3 gmoles-', 

gmoles cm-' and lop6 cm2 s-' respectively, which lead to the following values 
for the dimensionless parameters: Ps = lo6, A, = 1 and k = In the case of 
diffusion-controlled adsorption the value of ki ,  hence k ,  is assumed to be infinity 
(Borwankar & Wasan 1983). 
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We shall also define a new dimensionless surfactant bulk concentration 
a 

PO2 

= y ( P  - Po) 

and surface excess 

Finally, we point out a combination of parameters that will emerge later in our 
analysis : 

where YO = apo/pk is the dimensionless surfactant bulk concentration everywhere 
initially and in the far field at all times. 

Following the analysis of Plesset & Zwick (1952), we recast the problem in the 
dimensionless Lagrangian coordinate 

Af yo = KaPo,  

and in the nonlinear time 

t = 1‘ x4(e)de, 

where z is the dimensionless time defined as z = tQO, and x = R/a  is the dimensionless 
bubble radius. The evolution equations (2.1) and (2.2) take the forms 

and 
d (x2(t)Ys(t)) 1 

= 7 @ ( Y S ( t ) ,  Y(O = 0,t)) 
dt  x2(z)  

respectively, with boundary and initial conditions for the field equation 

x2(Q) aY(0 = 0 ,Q)  
9 s  a0 = @, 

Y((a,t = 0) = Y(O -+ C0,Q) = YS(Q = 0)  = 0. 
Here @ is the dimensionless kinetic expression (2.4): 

Y S  
( l - Y s ) ( Y ( ~ = O , z ) + Y ~ ) - - e x p [ - A Y Y S ]  

Af 

The task, then, is to determine the surface excess of surfactant and the bulk 
concentration of dissolved surfactants as functions of time, and time and space, 
respectively. This requires solution of (2.5)-(2.7). In cases of practical interest, the 
bubble is small (which implies that Qo is large) and the diffusivity of the surfactant 
in the liquid is small. Hence the important problems are characterized by large 
8,. Physically, this means that the rate at which surfactant molecules populate the 
interface is limited by their slow transport via convection-enhanced diffusion through 
the liquid to the interface. By comparison, adsorption is rapid. This limiting case is 
known as the diffusion-controlled limit. 

It is natural, therefore, to investigate the limit 9, -+ co. Clearly (2.7) implies that 
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@ = 0. This information and (2.6) suggest that (d/d?) (x2(?)Ys(?)) = 0. However 
(2.5) implies (d/d?)( Y )  = 0. These limiting equations are inconsistent, as they yield a 
solution for Y and Y s  that cannot possibly satisfy @ = 0. 

The resolution of this paradox is the realization that the limit PS -+ 00 is singular 
for the field equation (2.5). Hence we must treat the problem at large but finite 
YS using singular perturbation theory. Physically, this means that no matter how 
large the PCclet number is, there will be diffusive transport. The diffusive transport 
is critical to obtaining the solution of the transport problem for nearly insoluble 
surfactants. Before beginning the analysis, it is worthwhile to point out that by 
‘nearly insoluble’ we mean here and throughout the paper a surfactant for which 
desorption and diffusion over the length scale of the bubble occurs slowly relative to 
the time scale for bubble oscillations. 

3. Analysis 
As we have remarked, the surfactant transport problem is characterized by a 

large PCclet number. Similar problems were treated by Fyrillas & Szeri (1994, 1995, 
hereinafter referred to as FSI and FSII, respectively) for the gas transport across the 
dynamic interface of an oscillating bubble. 

In the gas transport problem, we carefully refrain from any specification of the 
nature of the bubble oscillation that drives the transport problem, other than to require 
that it be periodic. What emerges from the perturbation approach is essentially an 
understanding of how to average the equations and boundary condition over a period 
of the bubble oscillation so as to obtain equations of reduced complexity for the slow 
growth or dissolution of the bubble on a diffusive time scale. 

In the present work, we shall follow this same general scheme, although the non- 
linear boundary condition and surface excess evolution equation present significant 
challenges. The goal of the analysis, therefore, is to develop an understanding of how 
to average the equations over a period of the bubble oscillation to obtain simplified 
equations for the slow diffusive transport of surfactants. 

The plan of the analysis is as follows. The bulk problem (2.5) is treated by splitting 
into an oscillatory and a smooth problem and expanding each in powers of the small 
parameter YS-’I2. By treating the surface excess concentration (Y,) as an arbitrary 
but known function of time we obtain expressions for the bulk concentration on the 
interface Y ( o  = O,?) to each order in 9,-’/’. The surface excess evolution equation 
(2.6) can then be expanded in a perturbation series for large 9s1’2 and solved using 
the method of multiple scales. 

The bulk problem (2.5) can be brought to a form similar to the problem solved in 
FSII, by rearranging the boundary condition (2.7) into the following form: 

G(?) dY(a = O,?) 
= Y(a = O,?) - Ye(?) 

9 s  aa 

where 

x4 exp [ - A N ~ / x ~ ]  
G(?) 3 & (x(?), N ( ? ) )  = 

k (x‘ - N )  
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N exp [ - A N / x 2 ]  
Ye(?)  E5 Y , ( X ( t ) , N ( t ) )  = Af (x? - N )  

- Yo. 

Note that we have added and subtracted a number of splitting constants Yip for later 
use. In these equations the surface excess concentration, Y s ( t ) ,  is related to a new 
dimensionless dependent variable N (  ?), 

which is proportional to the (excess) number of surfactant molecules assigned to 
the interface; the constant of proportionality is the number of surfactant molecules 
assigned to the saturated interface of a still bubble of equilibrium radius. 

Because the diffusion is limiting in this surfactant transport problem, the number 
of molecules assigned to the surface is very nearly constant over a period of the 
bubble oscillation. Hence, it will simplify matters considerably to work in terms of N 
for the surface excess rather than Ys.  The point is that N is nearly constant, whereas 
Y s  varies greatly over a period when the bubble oscillations are strongly nonlinear. 
We shall refer to N as the surface excess population to distinguish it from Y s  which 
has the interpretation of concentration. 

3.1. The oscillatory problem in the bulk 
As mentioned in FSI solution of the oscillatory problem is (by design) non-zero only 
in a boundary layer near the bubble and is characterized by the stretched spatial 
coordinate s = 9,1i2a. The oscillatory problem is 

with the boundary condition 

G ( t )  dYo,,(s = 0,;) 
Ps1i2 as 

Next we expand Yosc and N in successive powers in PS-li2. Consequently Ye(?)  and 
G(Z) can be expanded in successive powers in PsPs-li2 provided the surface excess is 
sufficiently away from saturation (as discussed in the Appendix). The expansions for 
N ,  G and Ye are worked out in the Appendix. 

To zeroth order we obtain 

with the boundary condition 

Yu,"sc(s = 0, t )  = Y:(;) - Y; 

The condition that defines the splitting to zeroth order is that the average of the 
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condition with respect to the time 2, defined as 
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should be zero. Here T is the dimensionless bubble period. This condition ensures 
that the oscillatory problem at this order is non-zero only in a thin layer near 
the bubble surface. Stated differently, the splitting ensures that the boundary-layer 
solution of the oscillatory problem should match zero (FSII), which is the solution 
of the oscillatory problem outside the boundary layer. Hence the splitting constant is 
given by 

Y: = ( Y:(2))t,  

where 
N O  exp [ - A N O / ~ ' ( ? ) ]  

Fu,o(t) = - Yo. 
Af ( X q q  - NO) (3.4) 

Higher-order terms in the expansion satisfy the forced heat equation (equation 
(3.2)), while the lower-order terms in the expansion appear in the forcing and in the 
boundary conditions. To first and second order the boundary conditions are 

SY,O,,(s = 0, 2)  

dY;s,(s = 0,2) dY,O,,.(s = 0 ,Q)  , 
- Y,&. 

YiSc(s = 0 ,Q)  = Yb(2) + Go(;) - Yysr, 
i i S  

i l S  as Y&(s = O,?) = 'Pa(?) + Go(?) + G'(Q)  

3.2. The smooth problem in the bulk 
The smooth problem is characterized by slow convection-enhanced diffusion on the 
diffusive time scale. Therefore we introduce a second time scale R = ?/& which 
captures the slow diffusive behaviour explicitly. 

The smooth problem is 

with the boundary condition 

(3.5) 

As with the oscillatory problem we expand the smooth problem and its boundary 
condition in successive powers of Ps-1'2. To zeroth and first order the smooth 
problem admits a solution independent of Q. By eliminating secular behaviour in the 
second and third problems (as outlined in FSII) we get an additional equation for 
Y:, and Ysf,: 
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Yy,",(a = 0,A) = Ysp, 0 

Y;m(a = 0,A) = Ysp, 1 

aul;m(o = 0, 2, a) 
aa Y,",(a = 0, ?,A) = Go(?) + Yysp. 

3.3. Slow evolution of the surface excess 
From equations (3.2), (3.6) and their associated boundary conditions, we can, in 
principle, obtain an expression for the bulk concentration on the surface (Y(o  = 
O,?,A)). Now we turn to the surface excess problem. The differential equation 
governing the surface excess population is 

dN 1 
d? G(z) 

- [Y(a = O,?,A) - Y,(z)]. 

We substitute the formal expression for the bulk concentration on the bubble inter- 
face (obtained by summing the surface concentration of the smooth and oscillatory 
problems) derived in the previous sections, and use the expansions for G and Ye (see 
Appendix) to obtain 

dN 1 aY,!j'sc(s = 0, No(z) ,  ?) _ -  -- 
d? gs1/2 as 

The problem is treated by the method of multiple scales by introducing, as in the 
previous section, the slow time scale I = ?/gs to capture the slow diffusion-controlled 
adsorption. Next we expand N in powers of gS-'l2: 

1 1 1 N ( I ,  2) = No(A, ?) + -N'(I, ?) + - N 2 ( I ,  ?) + - N 3 ( I ,  ?) + . . . 9y2 9, YS3l2 

To zeroth order we have 

= 0, a NO( I ,  ?) 
a? 

which admits a solution independent of ?, i.e. No(A, 5 )  = No(A). However No is further 
determined by eliminating secular behaviour in N 2 .  The differential equation for N 2  
is 

a N 2  dNo aY&(s = O,NO(I),N'(A,?),?,I) aY;m(a = O,NO(A),I) - = -- 
aa + 

as 
+ a t  dA 

To eliminate secular behaviour we force N 2  to have zero ?-average. Here we should 
point out that Y ~ s c  and Y:sc depend indirectly on the long time I through their 
respective boundary conditions, which depend on No(l) .  Furthermore the oscillatory 
problem reaches its asymptotic limit after a few bubble oscillations (see FSII) and 
does not contribute to any secular behaviour because by design it is periodic with 
respect to 9 with zero mean. These considerations lead to the following equation for 
NO: 

9 (3.7) 
dNo aY:m(o = 0, No( I ) ,  A) -- - 
dA aa 
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where we have explicitly noted the dependence of Yy,O, on No, with initial condition 

N0(A = 0) = 0. 
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Of course, this equation is coupled to the smooth problem in the bulk (3.6), 

with boundary conditions 

NO 

( Af  (x2(Q) - N o )  i 

Yv,",(. = 0,A) = (Y:(Q))* = 

Y&(a + a3,L) = 0, 

!P,o,(a,i = 0) = 0. 

and initial condition 

In a sense, the goal of our analysis has been achieved. We have developed a 
self-consistent scheme for averaging the transport problem over the short time of a 
bubble oscillation, in order to develop simpler equations that yield the behaviour 
over the long, diffusive time scale. One might question, however, whether equations 
(3.7)-(3.9) are simpler than the original transport problem. In defense of this point 
we offer the observation that PS has disappeared from the system! 

We shall not end here, however, as there is an easily obtained asymptotic solution 
that we believe will prove of practical utility. At the asymptotic steady state (indicated 
by an overbar) we do not expect any 1 dependence, i.e. aY,m/an = dNO/dl = 0. This 
leads directly to the solutions to Y,O, = 0, and No is a constant. The constant N o  
satisfies the following nonlinear integral equation: 

Hence, the asymptotic limit of the surfactant transport problem is such that the 
smooth problem is identically zero. This deduction is justified because the smooth 
problem is the one responsible for any surfactant flux to the bubble interface. Asymp- 
totically in time the excess amount of surfactant adjusts itself in such a way that there 
is no adsorption or desorption between the interface and the bulk. This is a condition 
analogous to the threshold condition of rectified diffusion; see Eller & Flynn (1965) 
and FSI. The condition (3.10) may be regarded as a dynamic equilibrium adsorption 
isotherm in much the same way as cP = 0 for a still bubble yields a static equilibrium 
adsorption isotherm. In both cases, the surface excess of surfactant is related to the 
far-field bulk concentration of dissolved surfactant, in a way that depends on the 
affinity of the surfactant for the interface relative to the bulk ( A f )  and on the non- 
ideality parameter ( A ) .  However, the dynamic equilibrium adsorption isotherm also 
involves the periodic bubble oscillation and the average with respect to the nonlinear 
time Q. 

If No is small because po is small or the surfactant has only a weak affinity for 
the interface, the nonlinear integral equation (3.10) can be solved explicitly for small 
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where we have used (3.3) to express the averages in the original dimensionless time z. 
Here is defined as the average over one bubble oscillation with respect to time z. 

Because the solution of the smooth problem is zero asymptotically in time, the bulk 
concentration is given by the oscillatory problem. Hence the bulk concentration on 
the interface is equal to Yy,O (equation (3.4)) asymptotically in time: 

N O  exp [ - A N O / X ’ ( ~ ) ]  
YO(s = 0, t) = 

Af (x2(t) - N o )  ‘ 

(3.12) 

Note that the splitting constant has vanished as a consequence of (3.10). Because 
(3.12) is periodic, one may readily obtain the asymptotic solution to the oscillatory 
concentration field to leading order by a Fourier series approach similar to that 
employed in FSI and FSII. 

4. Results and discussion 
In our analysis, we have obtained: (i) simplified equations for surfactant transport 

on the slow diffusive time scale, (ii) a straightforward asymptotic result that reduces 
to a single nonlinear integral equation that may be regarded as a dynamic equilibrium 
adsorption isotherm, and (iii) an explicit solution of the asymptotic surface excess 
population in the case where the far-field bulk concentration is small or the surfactant 
has only a weak affinity for the interface. In what follows, we shall explore the 
consequences of the dynamic equilibrium adsorption isotherm that we have developed. 
First, we examine surface excess populations on dynamic, compared to still bubbles. 
Next, we consider briefly the equation of state and the surface tension. Finally, we 
redress our previous calculations of bubble growth rates via rectified diffusion in the 
presence of insoluble surfactants (FSII), in the light of our new understanding of 
surfactant transport. 

4.1. A still versus an oscillating bubble: equilibrium adsorption isotherms 
As mentioned earlier, in the case of a still bubble one can obtain an integral equation 
for the evolution of Ys(z),  as a simplification of an initial value problem. The 
asymptotic limit to this initial value problem, however, can be easily obtained by 
setting all time derivatives equal to zero in equations (2.5) and (2.6) and solving the 
resulting problem. One readily obtains a nonlinear algebraic equation for Y : 

exp[-AYs] = Af Yo. (4-1) 
Y S  

1 - Ys 
This is the (static) equilibrium adsorption isotherm. For an ideal interface, i.e. A=O, 
we can solve explicitly for !Ps to obtain 

It is important to note that these results for the surface excess are the same in the 
case of a bubble or of a plane interface. The transient analysis for a plane interface 
was presented by Borwankar & Wasan (1983). The asymptotic limit as presented in 
their figures 3 and 4 agrees with the solution of (4.1). 
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FIGURE 1. The dimensionless surface excess population of surfactant versus dimensionless far-field 
concentration for a bubble of radius 20pm. The solid curves correspond to a still bubble and the 
dashed curves to an oscillating bubble forced by a pressure amplitude of 0.5 bar and frequency 
26.6 KHz. The diffusivity of the gas in the liquid is 2.0 x cm2 s-' and the interfacial tension is 
73 dyn cm-'. 

Here we should point out that in the case of an oscillating bubble the asymptotic 
limit for the surface excess satisfies the equilibrium adsorption isotherm (4.1) in the 
average sense, as equation (3.10) may be recast in the more suggestive form 

Hence the nonlinear algebraic equation (4.1) becomes a nonlinear integral equation 
in the case of a periodic bubble oscillation. What is not intuitive about this very 
simple result is that the average should be taken with respect to the nonlinear time 2, 
rather than with respect to 'real' time z. 

To evaluate the expression for No,  (3.10), we require a model for the bubble 
oscillation. We shall use the non-polytropic four-term Galerkin formulation of 
Kamath & Prosperetti (1989) (see FSI). This model allows for a spatially non- 
uniform temperature field inside the bubble and is more accurate near resonances 
than polytropic models. It consists of eight nonlinear ODES which are integrated 
numerically using the software AUTO94 (see Doedel, Wang & Fairgrieve 1994). 

The bubble model consists of an air bubble created in water and set into oscillation 
by a sinusoidal sound field. In figure 1 we show for comparison the asymptotic 
surface excess population of surfactant ( N o )  versus the dimensionless quantity A, YO 
for a still (solid curves) and an oscillating (dashed curves) bubble, and for an ideal 
( A  = 0) and a non-ideal ( A  = 2) interface. For this calculation and in what follows, 
the bubble is of radius 20 pm, the amplitude of the sound field is 0.5 bar, the driving 
frequency is 26.6 KHz and the interfacial tension is 73 dyncm-'. Other parameters 
are the same as in FSII. In this calculation we assumed that surfactants do not alter 
bubble dynamics through surface tension; we return to this point shortly. 

If one examines figure 1 carefully it is clear that oscillations favour the presence of 
surfactants at small populations. Equation (3.11) reveals that the ratio between the 
fourth and second moments of the bubble oscillation is the controlling parameter to 
first order. If this ratio is greater than one the interface of an oscillating bubble would 
have a greater amount of surfactant than a still bubble, assuming both are immersed 
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in a liquid with the same far-field bulk concentration of dissolved surfactant. Because 
this ratio is greater than one for oscillations that linger at large x, the dashed curve 
always lies above the (companion) solid curve in figure 1. A second parameter that 
favours the presence of surfactants on the interface is positive values of the interaction 
parameter A, which measures the attraction between surfactant molecules (Borwankar 
& Wasan 1983). 

The most important result is that while oscillations make the surface more ‘at- 
tractive’ to surfactant molecules at first, oscillations decrease the saturation limit of 
the interface. Analysis of equation (3.10) reveals that the dynamic saturation limit 
is controlled by the minimum bubble radius. The maximum amount of surfactant 
that can reside on the interface is that amount which renders the interface saturated 
at the minimum radius (xmLn). Hence at saturation, N o  is equal to the square of the 
minimum bubble radius ( No = xkin ). The physical explanation is that any amount 
of surfactant that would yield a supersaturated interface has no time to diffuse to the 
bubble surface because desorption is instantaneous at such a condition while diffusion 
is rate-limited. One should be careful though, because, firstly, the present analysis is 
valid provided xkin - No >> Ps-1/2 as mentioned in the Appendix and, secondly, the 
validity of the kinetic rate expression is questionable very close to saturation owing 
to possible crystallization or collapse of the interface (Van Uffelen & Joos 1993). 

4.2. Equation of state 
Because, asymptotically in time, the interface complies with the Frumkin isotherm 
(equation (3.12)), the surface equation of state is (Edwards et al. 1991) 

( 4 4  

where &- is the universal gas constant, T is the temperature, n is the surface pressure 
and y is the surface tension (where the subscript 0 corresponds to the surface tension 
of a clean interface). This equation is valid provided the solution is dilute enough 
that the behaviour is ideal and the mass concentration is proportional to the mole 
fraction (Gaines 1966). 

We have used (4.2) as a modification of the interfacial surface tension due to the 
presence of surfactants in the liquid in order to compare dynamics of a clean bubble, 
i.e. Ro = 0, with a surfactant-covered bubble. No significant changes were observed 
in the bubble oscillation even for values of N o  very close to saturation. A comparison 
of the gas pressure term, p ~ ~ ( a / R ( t ) ) ~ v ,  and the surface tension term, 2y/R(t), in the 
dynamical equation for bubble oscillations (e.g. the Rayleigh-Plesset equation), reveals 
that the former is two orders of magnitude larger than the latter for oscillations away 
from resonance (Prosperetti 1995, personal communication). 

4.3. Bubble growth rates 
Asymptotically in time, the present analysis of nearly insoluble surfactants suggests 
that they behave as though insoluble, although the number of surfactant molecules 
on the interface depends on the bubble oscillation. Hence the theory developed in 
FSII for bubble growth rates is not restricted to insoluble surfactants but applies 
also to the case of soluble surfactants at large Ps. The difference is that for soluble 
surfactants the surface excess concentration is given by the following expression : 
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FIGURE 2. The adsorption isotherm for the surfactant dodecyl sodium sulphate ( C12H&04Na). 
The solid curve corresponds to Frumkin isotherm 'us/ (1 - Y s )  exp(-A Y s )  = AfYo, and the 
dashed curve to the experimental data of Caskey & Barlage (1971). 
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p;lP', 
FIGURE 3. The dimensionless surface excess population of surfactant on an oscillating bubble versus 
the dimensionless pressure amplitude that forces the bubble dynamics. The solid curves correspond 
to dimensionless far-field concentrations (Aj Yo) of 0.7, 0.79 and 0.9 (as shown) and the dashed 
curve to saturation conditions. The bubble is of equilibrium radius 20 pm as in figure 1. 

and depends on a number of parameters (A,  A f ,  Yo) and the bubble oscillation x(z) 
as mentioned in $3.3. For truly insoluble surfactants the surface excess concentration 
depends only on the initial concentration. 

Using experimental data from figures 4 and 5 of Caskey & Barlage (1971), we 
were able to obtain information on the static equilibrium adsorption isotherm for 
the three surfactants used in FSII, and to extend to the dynamic equilibrium ad- 
sorption isotherm (3.10). We concentrate on the surfactant dodecyl sodium sulphate 
(C12H&O&4a) because it best evinces the effect of solubility. As shown in figure 2, 
the Frumkin adsorption isotherm is an adequate characterization of the surfactant, 
with the following values for the constants: the adsorption coefficient K ,  = 1.49 
lo7 cm3 gmoles-', the surface excess saturation density p& = 4.87 lo-" gmoles cm-*, 
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and the non-ideality parameter A = 1.05. These parameters were obtained by curve- 
fitting. 

In figure 3,  we show the effect of bubble oscillations on the surface excess pop- 
ulation, for a bubble of radius 20 pm. The conditions are the same as in figure 1. 
The solid curves correspond to three different dimensionless far-field concentrations, 
K ,  po  = 0.7, 0.79 and 0.9, which for the case of a still bubble correspond to a surface 
excess concentration of 2.7, 2.9, and 3.1 lo-'' gmoles cm-' respectively. The reason 
for choosing these values is to compare the present results, on soluble surfactants, 
with the results in FSII, on insoluble surfactants. Oscillations favour the presence 
of surfactants on the interface at these dilute conditions. Had the surfactant been 
insoluble, the solid lines in figure 3 would have been perfectly horizontal. The dashed 
curve shows the dimensionless amount of surfactant on the interface under saturation 
conditions and is equal to xiin. As the dimensionless pressure amplitude increases, 
the minimum bubble radius decreases along with the maximum amount of surfactant 
that can reside on the interface. 

Now we investigate the consequences of this enrichment of the surface by surfactants 
on rectified diffusion. Following the analysis in FSII, we assume an exponential 
dependence of interfacial resistance on surface concentration : 

where p is a constant depending on the surfactant and CI = p No&. In figure 4 we 
show plots of predicted bubble growth rates versus dimensionless pressure amplitude 
for a bubble of radius 20 pm under the same conditions as for figure 1. We use 
the expression for growth rates obtained in FSII (equation (7.1)) along with (4.3) for 
the interfacial resistance, to compare the growth rates of a clean bubble (fine-dashed 
curve), to the growth rates of a bubble covered with the surfactant dodecyl sodium 
sulphate ( p  = 0.36). The long-dashed curves show the bubble growth rate under 
the assumption that the surfactant is insoluble (same as figure 5 in FSII), while 
the solid curves show the growth rate under the assumption that the surfactant is 
sparingly soluble and satisfies the dynamic equilibrium adsorption isotherm. Three 
different cases were considered for the three different bulk concentrations of figure 
3. Because, for the conditions under consideration, oscillations favour the presence 
of surfactants on the interface (see figure 3), the effect of solubility is to enhance 
bubble growth rates (or inhibit bubble dissolution). Similar to insoluble surfactants, 
there is a critical bulk concentration for which soluble surfactants do not contribute 
to bubble growth rates. Higher bulk concentrations favour bubble growth rates while 
smaller concentrations inhibit bubble growth rates. For small oscillations the critical 
value of CI is one (Fyrillas 1995), which corresponds to a dimensionless critical bulk 
concentration of 0.73, for the surfactant under investigation. 

For dilute solutions, the present theoretical results suggest that the assumption of 
the surfactant being soluble, instead of being insoluble, leads to higher bubble growth 
rates (or inhibits bubble dissolution). 

5. Conclusions 
We have employed the technique of splitting developed in our earlier papers 

(FSI and FSII), to find simplified equations for the surfactant transport problem 
associated with a spherical bubble undergoing arbitrarily large-amplitude periodic 
volume oscillations. These simplified equations are averaged over the period of the 
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FIGURE 4. The rate of bubble growth in pm per minute versus dimensionless pressure amplitude 
p i l p ; .  Each fine-dashed curve 
corresponds to a clean bubble and the other two to a surfactant-covered bubble, with surfactant 
dodecyl sodium sulphate ( Cl2HZ5SO4Na). Each long-dashed curve shows the bubble growth rate 
under the assumption that the surfactant is insoluble (same as figure 5 in FSII), while each solid 
curve shows the bubble growth rate under the assumption that the surfactant is sparingly soluble and 
satisfies the dynamic equilibrium adsorption isotherm (3.10). Three different cases were considered 
for three different dimensionless bulk concentrations (K,po):  (a )  0.7, ( b )  0.79 and ( c )  0.9. 

The bubble is of equilibrium radius 20 pm as in figure 1. 

oscillating bubble and clarify the surfactant dynamics over the long diffusive time 
scale. There is a straightforward asymptotic state for the surface excess population that 
reduces to the solution of a single nonlinear integral equation. This latter equation 
is interpreted as the dynamic equilibrium adsorption isotherm for the surfactant 
distribution. 

The surfactant transport problem is governed by the convection-diffusion equa- 
tion in spherical coordinates and an equation for the surface excess concentration, 
where the barrier to adsorption is based on a diffusion-kinetic model developed by 
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Borwankar & Wasan (1983). The problem was split into two parts. The oscillatory 
problem differs from zero only in a thin layer in the neighbourhood of the bubble 
surface and is not responsible for any net surfactant transport. The smooth problem 
is the one responsible for surfactant flux to or from the bubble interface and is 
identically zero asymptotically in time. It was found that the amount of surfactant 
adsorbed on the interface is controlled by the diffusion time scale, and asymptotically 
in time there is no adsorption or desorption. The surfactant behaves as though 
insoluble, and the amount of surfactant residing on the interface satisfies the corre- 
sponding adsorption isotherm in an average sense. For interfaces lightly populated 
by surfactant molecules, oscillations favour the adsorption process, and the surface 
excess population of surfactant on an oscillating bubble is higher than that on a still 
bubble. However, oscillations reduce the saturation limit of the interface which is 
controlled by the minimum bubble radius. The maximum surface excess population 
of surfactants on an oscillating bubble is that which renders the interface saturated 
at the minimum radius. 

Using Gibbs’ equation, an expression for the equation of state was developed which 
was used in the bubble dynamic model as a correction to the surface tension due to 
the presence of surfactants. Hence, associated with the addition of surfactants, there 
is a nonlinear dependence of surface tension on the bubble oscillation and the bulk 
concentration of surfactants. However, no significant changes were observed in the 
bubble oscillation at conditions away from resonance. 

Based on experimental data of Caskey & Barlage (1972), an exponential depen- 
dence of interfacial resistance on surfactant surface concentration was assumed, of 
the form RI cc exp(a/x2(r)) where x ( r )  is the dimensionless bubble radius. The ex- 
ponential coefficient a is related to the bulk concentration, through the adsorption 
isotherm. It was observed that for a fixed bubble oscillation, there is a critical bulk 
concentration, which determines the effect of the surfactant on the growth rate. For 
higher concentrations the bubble grows more quickly (or dissolves more slowly); for 
lower concentrations the bubble grows more slowly (or dissolves more quickly) as a 
consequence of the presence of surfactants. For dilute solutions, the present theoret- 
ical results suggest that the assumption of the surfactant being soluble, instead of 
being insoluble, leads to higher bubble growth rates (or inhibits bubble dissolution). 
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under the Young Investigator Program. The authors would like to thank A. Nadim 
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Appendix. Expansions for N ,  G and Ye 

An expansion of N in successive powers of Ys-1’2, i.e. 

leads to the following expressions for G and Ye to zeroth order: 

x4 exp [ -ANO’/P]  

k (x2 - NO) 
Go(?) = 9 
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N O  exp [ - - A N ’ / x ~ ( ? ) ]  

Y,o(?) = - yo, 
A, (.2(?) - NO) 

respectively. Higher-order terms may be developed, but are not required explicitly in 
the present analysis. 

In 33, when treating the zeroth-order oscillatory and smooth problems (equations 
(3.2) and (3.6)), the term in the boundary conditions involving Go appears divided by 
gS‘/’ and Y s  respectively, and is thus moved to higher order. However, in some cases, 
a more careful treatment is required because the expression for Go has (x2 - N o )  in 
the denominator. This term, which is proportional to (1 - Y s ) ,  is very close to zero 
when the surface concentration is close to (dynamic) saturation, and can be omitted 
provided that 

(X”(Z) - NO(2)) >> Ys-l12 

This condition can be expressed more precisely using the asymptotic value of N o  and 
the fact that the value of N o  is always less than the square of the minimum bubble 
radius ( x i i , )  : 

For a given a bubble oscillation, use of figure 1 gives an idea of the maximum value 
of A,Yo so that this condition is satisfied. 
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